ЛАПЛАСА УРАВНЕНИЕ - significado y definición. Qué es ЛАПЛАСА УРАВНЕНИЕ
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЛАПЛАСА УРАВНЕНИЕ - definición

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение

Лапласа уравнение         

дифференциальное уравнение с частными производными

где х, у, z - независимые переменные, а u = u(x, y, z) - искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. у. приводит ряд задач физики и техники. Л. у. удовлетворяют температура при стационарных процессах, потенциал электростатического поля в точках пространства, свободных от зарядов, потенциал поля тяготения в области, не содержащей притягивающих масс, и т. п. Функции, удовлетворяющие Л. у., называются гармоническими функциями (См. Гармонические функции). О постановке задач для Л. у. см. в ст. Краевые задачи.

Уравнение Лапласа         
Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
ЛАПЛАСА УРАВНЕНИЕ         
дифференциальное уравнение с частными производными 2-го порядкагде, x, y, z - независимые переменные, ?(x, y, z) - искомая функция. Рассмотрено П. Лапласом (1782). К уравнению Лапласа приводят многие задачи математической физики (напр., распределение температур в стационарном процессе).

Wikipedia

Уравнение Лапласа

Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

2 u x 2 + 2 u y 2 + 2 u z 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}+{\frac {\partial ^{2}u}{\partial z^{2}}}=0}

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

2 u x 2 + 2 u y 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0}

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

Δ = 2 x 2 + 2 y 2 + 2 z 2 + . . . {\displaystyle \Delta ={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}+...}

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как Δ u = 0 {\displaystyle \Delta u=0}

В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.

  • Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".